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Atrial Fibrillation (AF) is a classification of cardiac disrhythmia is an arrhythmia in which the heartbeat is irreg-
ular, too fast, or too slow. Because of this erratically changing behavior, effective pumping of blood by the heart to
other organs results inmalfunctioning of them. Generally, AF is seen commonly in elder peoplewho are suffering
from heart failure. To effectively treat AF, automatic detectionmethods based on electrocardiograph (ECG)mon-
itoring is highly desirable. The objective of this study is to develop a novel algorithm able to detect atrial fibrilla-
tion episodes supervising a standard superficial ECG lead. In this discussion, AF is detected by considering the
MIT/BIH arrhythmia database. The features of this database is extracted by using the different orderings of Con-
jugate Symmetric–Complex Hadamard Transform (CS–CHT), namely, natural order, Paley order, sequency order,
and Cal–Sal order as they are fast and can be implementedwith less memory usage as compared with the previ-
ous techniques in literature. The results obtained are applied to Levenberg–Marquardt Neural Network (LMNN)
classifier and the performances of these techniqueswere estimated in terms of sensitivity, specificity, and overall
detection accuracy on the datasets.
© 2016 The Society of Cardiovascular Academy. Production and hosting by Elsevier B.V. All rights reserved. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

AF is an arrhythmia due to the anomalous discharges of electrical
signals in the atria of heart in comparison to the ventricles, leading to
the potential stroke due to the clot formation in the atrium. Effective
prevention of AF2,5 is possible by detecting the heart activities through
analysis of electrocardiogram (ECG).16 Episodes of AF comprise of un-
balanced heart beat interval (RR) and/or low P-wave amplitude in the
QRS complex in addition to the irregular cardiac frequency. In this
paper, detection of AF is carried out by the extraction of atrial activity
of MIT/BIH arrhythmia database. Primarily, noise in the signal is re-
moved using filters and then the non-uniform beats obtained are con-
verted to uniform beats of size 128 by resampling in order to extract
features of the atrial with non-linear signal processing technique of
12-lead ECGwith the detection of the spectral peak detection and spec-
tral entropy by applying Fourier transforms in order to avoid the atrial
and ventricular spectrumoverlapping, which cannot be removed by lin-
ear filtering. But the previous works4 failed to achieve this detection. In
this paper, this drawback in feature extraction is overcome by consider-
ing different orders of Conjugate Symmetric–Complex Hadamard
Transform (CS–CHT),3 namely, natural order, Paley or dyadic order,
symmetric order, and Cal–Sal order.6,1 These extracted features are

categorized into two classes, namely, Normal signal andAF signal by ap-
plying to a Levenberg–Marquardt Neural Network (LM NN) classifier.
The optimized technique from all the techniques from different orders
of CS–CHT is obtained by considering the sensitivity and specificity plot.

SystemModeling

Thedetection of AF signal,9,10 as shown in Fig. 1. using the electrocar-
diograph method, is performed in this paper by considering the follow-
ing processes:

A. Preprocessing

The preprocessing contains mainly three steps

• Removing noise
• Segmenting the ECG files into beats
• Converting the non-uniform beats into uniform

Thenoise from the ECG signal is removed by using thefilters. The ob-
tained ECG files are segmented into beats by detecting the “R” peaks.
The samples obtained from these beats are non-uniform samples. By
using a technique called resampling, uniform samples of size 200 are
generated from these non-uniform samples in each beat. The MIT–BIH
Record numbers of AF database of 26 patients and Normal Sinus
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Rhythmdatabase of 18 patients are used to detect AF. The sampling rate
of normal signals is 128 Hz and AF signals are 250 Hz. For easy process-
ing, they both are resampled again with the same sampling rate.
De-noising of ECG signal is applied to Sgolay FIR smoothing filter. Beat
is the (2/3)rds of the RR interval to the right of the R peak and (1/
3)rdsof the RR interval to the left of the R peak. After segmentation,
each beat is resampled to 200 samples.

B. Feature Extraction

In real-time applications, Hadamard transform is used for the signals
to be processed using various techniques like signal and image process-
ing, digital logics because of uncomplicated realization of the fast
algorithm. But Hadamard transform cannot be applied to complex
signals, so, complex Hadamard transform is implemented, which

consists of
n
! 1;!

ffiffiffiffiffiffiffiffi
−1

p o
. Thememory requirement for these transforms

is high as compared to theDFTbecauseDFTdepends on frequencybut not
on sequency. Hence, a Conjugate Symmetric–Complex Hadamard Trans-
form (CS–CHT) is introduced to reduce this memory requirement.
Hadamardmatrices can be ordered in different methods namely, natural,
dyadic or Paley or bit–reversed, sequency,8 and cal–sal orderings.7

By using the tensorial products, the rows of a natural order CS–
Complex Hadamard matrices are obtained as represented below in
Eq. (1).

HS ¼
Hs=2 Hs=2

H0
S=2TS=2 −H0

S=2TS=2

" #
ð1Þ

where TS and HS/2′ are represented using Eqs. (2) and (3).

TS ¼
IS=2 0
0 jIS=2

" #
ð2Þ

H0
S=2 ¼

H0
s=4 H0

s=4
H0

S=4I
0
S=4 −H0

S=4I
0
S=4

" #

ð3Þ

where IS/2′ is defined using Eq. (4).

I0S=2 ¼ IS=4 0
0 −IS=4

" #
ð4Þ

By placing S=2 in Eq. (1), we have

HS ¼
1 1
1 −1

" #

CS–Complex Hadamard matrices in natural order satisfy the
Good's theorem, which states the uniformity between the tensorial

product and normal product with the sparse matrix as represented
in Eq. (5).

HSð Þnat ¼

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 j −1 −1 1 j −1 − j
1 − j −1 j 1 − j −1 j
1 1 j j −1 −1 − j − j
1 −1 j − j −1 1 − j j
1 −1 − j j −1 1 j − j
1 1 − j − j −1 −1 j j

2

66666666664

3

77777777775

ð5Þ

A CS–Complex Hadamard matrix is said to be in Paley ordered if the
Rademacher functions are used to generate the Hadamard matrix. A
Paley-ordered matrix is obtained from the natural ordered matrix by
simply changing the row of a natural order with the bit–reverse of the
row number. For example, for an 8×8 matrix, the natural row number
3 (011) is replaced by 6 (110). The FFT is similar to the fast algorithms
of CS–Complex Hadamard matrix. The Paley ordered CS–Complex
Hadamard matrix is represented in Eq. (6).

HSð Þpal ¼

1 1 1 1 1 1 1 1
1 1 j j −1 −1 − j − j
1 j −1 − j 1 j −1 − j
1 −1 − j j −1 1 j − j
1 −1 1 −1 1 −1 1 −1
1 −1 j − j −1 1 − j j
1 − j −1 j 1 − j −1 j
1 1 − j − j −1 −1 j j

2

66666666664

3

77777777775

ð6Þ

HSð Þseq ¼

1 1 1 1 1 1 1 1
1 1 j j −1 −1 − j − j
1 −1 − j j −1 1 j − j
1 j −1 − j 1 j −1 − j
1 − j −1 j 1 − j −1 j
1 1 − j − j −1 −1 j j
1 −1 j − j −1 1 − j j
1 −1 1 −1 1 −1 1 −1

2

66666666664

3

77777777775

ð7Þ

HSð Þcal−sal ¼

1 1 1 1 1 1 1 1
1 −1 − j j −1 1 j j
1 − j −1 j 1 − j −1 j
1 −1 j − j −1 1 − j j
1 −1 1 −1 1 −1 1 −1
1 1 − j − j −1 −1 j j
1 j −1 − j 1 j −1 − j
1 1 j j −1 −1 − j − j

2

66666666664

3

77777777775

ð8Þ

Real-time applications use an ordering called sequency ordering,
which is achieved by incrementing number of zero crossings. The se-
quency ordering is obtained from Paley ordering by simply applying
gray code conversion for a row in Paley ordering. For example, for an
8×8matrix, the Paley row number 7 (111) is replaced by 4 (100) in Se-
quency ordering. Eq. (7) represents the eight-order CS–Complex
Hadamard Matrix in sequency order.

Another ordering algorithm proposed for CS–Complex Hadamard
Matrix is Cal–Sal ordering. It can be achieved by placing even numbered

Fig. 1. ECG classification.
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rows in thefirst half of thematrix in ascending order and oddnumbered
rows in the secondhalf of thematrix in descending order as represented
using Eq. (8). This order ismore advantageous that the storage locations
required are dropped by half, i.e., S storage locations required are
dropped to S/2. Cal–Sal order matrix is symmetric.

C. Levenberg–Marquardt Neural Network (LMNN) Classifier

A back propagation Levenberg–Marquardt Neural Network (LMNN)
method is used to detect the AF in this paper. Rapid execution of the
network is done by using NN. A well-designed NN network comprises
of 20 input neurons, 10 neurons in the hidden layer, and 3 neurons in
the output layer. A comparison of these results is made with the Scalar
Conjugate Gradient Neural Network (SCG NN) in which a conjugate
direction search is performed instead of linear search. LMNN is a very
simple and robust method for an approximating function. This network
training and testing are performed by using 1800 ECG beats and 1006
ECG beats correspondingly by setting the total number of iterations to
1000 and mean square error less than 0.001 with the minimum time
requirement.

Results and discussion

The convergence speed and final accuracy are increased by applying
the results obtained from feature extraction as the input of a neural
network. A sampling rate of 128 samples/beat is used for resampling
process. In this feature, extraction techniques of CS–CHT using different
orderings of natural, Paley, sequency, and Cal–Sal are used. The perfor-
mance of these four techniques is compared as shown in Table 1 below.

For measuring accuracy, two parameters are used as shown in (8).
They are sensitivity and specificity as represented in the Eqs. (9) and
(10).

specificity ¼
TrueNegative

TrueNegative þ FalsePositive
& 100 ð9Þ

sensitivity ¼ TruePositive
TruePositive þ FalseNegative

& 100 ð10Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

& 100 ð11Þ

TP TruePositiveð Þ ¼ Count of all the correctly classified Abnormal beats

TP TrueNegative
$ %

¼ Count of all the correctly classified Normal beats

FP FalsePositiveð Þ ¼ Count of Normal beats classified as Normal beats

FN FalseNegative
$ %

¼ Count of Abnormal beats classified as Abnormal beats

The network performance is checked by applying amultilayer NN in
training mode to decide if there is any requirement of any changes to
the training progression or the data set or the system planning. The
performance of different classifiers is compared as shown in Fig. 2. by
plotting sensitivity (TruePositive rate) and specificity (FalsePositive rate)
and it is obtained that the cal–sal order of CS–CHT achieves the maxi-
mum performance compared to that of the remaining orders.

The proposed method is compared with the other four detection al-
gorithms as shown in the Table 2 such as, RR interval (RRI), AR coeffi-
cients, symbolic dynamics (SD), and Shannon entropy and WTC
features in terms of related features selected from the original database
and classification accuracy obtained from different classifiers using
Matlab software. The work in Ref. 14 explored an experimental study
based on thedifference betweenRR intervals for extracting relevant fea-
tures for the detection of AF. The values of sensitivity and specificity are
94.4% and97.2%, respectively. Thework presented in Ref. 12 used AR co-
efficients as features for classification AF using three different classifiers.
AR coefficients are calculated for each 15-second data sequence length.
The values of specificity and sensitivity are 96.14% and 93.20%, respec-
tively. The work proposed in Ref. 13 used three statistical methods for
the detection of AF. These techniques are tested on AF database and
Normal database. The values of sensitivity and specificity are 97.2%
and 95.91%, respectively. The work proposed in Ref 16 used SD and en-
tropy and computed various operations like nonlinear or linear integer
filtering. Online analytical processing of the method can be achieved
using this novel algorithm. The values of sensitivity, specificity, and
accuracy are 96.89%, 98.27%, and 98.03% respectively.

Thework proposed in Ref. 11usedWTC coefficients for thedetection
of AF. The WTC features for the normal and AF datasets are calculated.
These features are optimized using PCA algorithm. The values of sensi-
tivity, specificity, and accuracy are 100%, 96.9%, and 99.1%, respectively.

From the experiments, this study concludes that the proposed
beat feature optimization technique with cal-sal order of CS–CHT
outperformed other three algorithms with selection of minimal number
of relevant features using CS–CHT. The proposed method shows the
highest classification accuracy for the detection of AF. The CS–CHT has
been employed intelligently to select the most relevant features that
could increase the classification accuracywhile ignoring noisy and redun-
dant features.

This procedure helps us to automate a certain section or part of the
diagnosis and then it will help the medical community to focus on
other crucial sections. This has also increased the accuracy of diagnosis.

Conclusions

Automation of diagnosis of the human heart bymeasuring ECG plays
amajor role in saving a patient. In this paper, this life saviour is achieved
in detection of AF signal with an accuracy of 99.9% by applying CS–SCHT
technique to the LMNN classifier. The obtained experimental results
have shown that the proposed SCHTmethod can extract more relevant
features than the othermethods proposed in the literature with highest
classification accuracy for the detection of AF.

Table 1
Classification using LM NN classifier.

Classifier Sensitivity Specificity Accuracy

CS−NCHT+LMNN 87.3% 89.9% 67.8%
CS−PALEYCHT+LMNN 89.2% 91.2% 89.3%
CS−SCHT+LMNN 92.2% 93.342% 93.2%
CS−CAL−SALCHT+LMNN 98.7% 99.97% 99.1%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

Acuracy comparison of different orders of CS-CHT using LMNN classifier

cal-sal
Sequency
Paley
Natural

Fig. 2. Comparison of different orders of CS–CHT using LM NN classifier.
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